Fever…..fever…..fever…..fever….

Fever, also known as pyrexia andfebrile response,[1] is defined as having a temperature above the normal range due to an increase in the body’s temperature set-point.[2][3] There is not a single agreed upon upper limit for normal temperature with sources using values between 37.5 and 38.3 °C (99.5 and 100.9 °F).[1][4] The increase in set-point triggers increased muscle contraction and causes a feeling ofcold.[5] This results in greater heat production and efforts to conserve heat.[6] When the set-point temperature returns to normal a person feels hot, becomes flushed, and may begin tosweat.[6] Rarely a fever may trigger afebrile seizure. This is more common in young children.[7] Fevers do not typically go higher than 41 to 42 °C (105.8 to 107.6 °F).[3]

Quick facts: Specialty, ICD-10 …
Fever
Clinical thermometer 38.7.JPG
An analog medical thermometershowing a temperature of 38.8 °C or101.8 °F
Specialty Infectious disease,pediatrics
ICD10 R50
ICD9 780.6
DiseasesDB 18924
MedlinePlus 003090
eMedicine med/785
MeSH D005334
Close

A fever can be caused by many medical conditions ranging from the not serious to potentially serious. This includes viral,bacterial and parasitic infections such as the common coldurinary tract infectionsmeningitismalaria andappendicitis among others. Non-infectious causes include vasculitis,deep vein thrombosis, side effects of medication, and cancer among others.[8]It differs from hyperthermia, in that hyperthermia is an increase in body temperature over the temperature set-point, due to either too much heat production or not enough heat loss.[1]

Treatment to reduce fever is not required.[5] Treatment, however, may increase comfort and help a person rest. Measures such as putting a cool damp cloth on the forehead and having a slightly warm bath may help.[7]Medications such as ibuprofen orparacetamol may also be effective at lowering the temperature.[9] Children younger than three months with a fever should be medically assessed.[7]Hyperthermia does require treatment.[5]

Fever is one of the most commonmedical signs. It is part of about 30% of healthcare visits by children[5] and occurs in up to 75% of adults who are seriously sick.[10] While fever is a useful defense mechanism; treating fever does not appear to worsen outcomes.[11][12]Fever is viewed with greater concern by parents and healthcare professionals than it usually deserves, a phenomenon known as “fever phobia”.[5]

Definition

A wide range for normal temperatureshas been found.[4] Fever is generally agreed to be present if the elevated temperature is caused by a raised set point and:

  • Temperature in the anus (rectum/rectal) is at or over 37.5–38.3 °C (99.5–100.9 °F)[1][4]
  • Temperature in the mouth (oral) is at or over 37.7 °C (99.9 °F)[17]
  • Temperature under the arm (axillary) or in the ear (otic) is at or over 37.2 °C (99.0 °F)

In healthy adult men and women, therange of normal, healthy temperaturesfor oral temperature is 33.2–38.2 °C (91.8–100.8 °F), for rectal it is 34.4–37.8 °C (93.9–100.0 °F), for tympanic membrane (the ear drum) it is 35.4–37.8 °C (95.7–100.0 °F), and for axillary (the armpit) it is 35.5–37.0 °C (95.9–98.6 °F).[18] Harrison’s textbook of internal medicine defines a fever as a morning oral temperature of >37.2 °C (>98.9 °F) or an afternoon oral temperature of >37.7 °C (>99.9 °F) while the normal daily temperature variation is typically 0.5 °C (0.9 °F).[19]

Normal body temperatures vary depending on many factors, including age, sex, time of day, ambient temperature, activity level, and more. A raised temperature is not always a fever. For example, the temperature of a healthy person rises when he or she exercises, but this is not considered a fever, as the set-point is normal. On the other hand, a “normal” temperature may be a fever, if it is unusually high for that person. For example, medically frailelderly people have a decreased ability to generate body heat, so a “normal” temperature of 37.3 °C (99.1 °F) may represent a clinically significant fever.

Types

Performance of the various types of fever
a) Fever continues
b) Fever continues to abrupt onset and remission
c) Fever remittent
d) Intermittent fever
e) Undulant fever
f) Relapsing fever

The pattern of temperature changes may occasionally hint at the diagnosis:

  • Continuous fever: Temperature remains above normal throughout the day and does not fluctuate more than1 °C in 24 hours, e.g. lobar pneumonia,typhoidmeningitisurinary tract infectionbrucellosis, or typhusTyphoid fever may show a specific fever pattern (Wunderlich curve of typhoid fever), with a slow stepwise increase and a high plateau. (Drops due to fever-reducing drugs are excluded.)
  • Intermittent fever: The temperature elevation is present only for a certain period, later cycling back to normal, e.g.malariakala-azarpyaemia, orsepticemia. Following are its types[20]
    • Quotidian fever, with a periodicity of 24 hours, typical of Plasmodium falciparum or Plasmodium knowlesimalaria
    • Tertian fever (48-hour periodicity), typical of Plasmodium vivax orPlasmodium ovale malaria
    • Quartan fever (72-hour periodicity), typical of Plasmodium malariaemalaria.
  • Remittent fever: Temperature remains above normal throughout the day and fluctuates more than 1 °C in 24 hours,e.g.infective endocarditis.
  • Pel-Ebstein fever: A specific kind of fever associated with Hodgkin’s lymphoma, being high for one week and low for the next week and so on. However, there is some debate as to whether this pattern truly exists.[21]

A neutropenic fever, also called febrile neutropenia, is a fever in the absence of normal immune system function. Because of the lack of infection-fightingneutrophils, a bacterial infection can spread rapidly; this fever is, therefore, usually considered to require urgent medical attention. This kind of fever is more commonly seen in people receiving immune-suppressingchemotherapy than in apparently healthy people.

Febricula is an old term for a low-grade fever, especially if the cause is unknown, no other symptoms are present, and the patient recovers fully in less than a week.[22]

Hyperpyrexia

Hyperpyrexia is a fever with an extreme elevation of body temperature greater than or equal to 41.5 °C (106.7 °F).[23]Such a high temperature is considered amedical emergency as it may indicate a serious underlying condition or lead to significant side effects.[24] The most common cause is an intracranial hemorrhage.[23] Other possible causes include sepsisKawasaki syndrome,[25]neuroleptic malignant syndrome, drug effects, serotonin syndrome, and thyroid storm.[24] Infections are the most common cause of fevers, however as the temperature rises other causes become more common.[24] Infections commonly associated with hyperpyrexia include roseolameasles and enteroviralinfections.[25] Immediate aggressive cooling to less than 38.9 °C (102.0 °F) has been found to improve survival.[24]Hyperpyrexia differs from hyperthermiain that in hyperpyrexia the body’s temperature regulation mechanism sets the body temperature above the normal temperature, then generates heat to achieve this temperature, while in hyperthermia the body temperature rises above its set point due to an outside source.[23]

Hyperthermia

Hyperthermia is an example of a high temperature that is not a fever. It occurs from a number of causes includingheatstrokeneuroleptic malignant syndromemalignant hyperthermia, stimulants such as amphetamines andcocaineidiosyncratic drug reactions, and serotonin syndrome.

Signs and symptoms

Michael Ancher, “The Sick Girl”, 1882, Statens Museum for Kunst

A fever is usually accompanied bysickness behavior, which consists oflethargydepressionanorexia,sleepinesshyperalgesia, and the inability to concentrate.[26][27][28]

Differential diagnosis

Fever is a common symptom of many medical conditions:

Persistent fever that cannot be explained after repeated routine clinical inquiries is called fever of unknown origin.

Pathophysiology

Hyperthermia: Characterized on the left. Normal body temperature (thermoregulatory set point) is shown in green, while the hyperthermic temperature is shown in red. As can be seen, hyperthermia can be conceptualized as an increase above the thermoregulatory set point.
Hypothermia: Characterized in the center: Normal body temperature is shown in green, while the hypothermic temperature is shown in blue. As can be seen, hypothermia can be conceptualized as a decrease below the thermoregulatory set point.
Fever: Characterized on the right: Normal body temperature is shown in green. It reads “New Normal” because the thermoregulatory set point has risen. This has caused what was the normal body temperature (in blue) to be considered hypothermic.

Temperature is ultimately regulated in the hypothalamus. A trigger of the fever, called a pyrogen, causes a release ofprostaglandin E2 (PGE2). PGE2 then in turn acts on the hypothalamus, which generates a systemic response back to the rest of the body, causing heat-creating effects to match a new temperature level.

In many respects, the hypothalamus works like a thermostat.[31] When the set point is raised, the body increases its temperature through both active generation of heat and retention of heat. Peripheral vasoconstriction both reduces heat loss through the skin and causes the person to feel cold. If these measures are insufficient to make the blood temperature in the brain match the new set point in the hypothalamus, then shivering begins in order to use muscle movements to produce more heat. When the hypothalamic set point moves back to baseline either spontaneously or with medication, the reverse of these processes (vasodilation, end of shivering and nonshivering heat production) and sweating are used to cool the body to the new, lower setting.

This contrasts with hyperthermia, in which the normal setting remains, and the body overheats through undesirable retention of excess heat or over-production of heat.[31] Hyperthermia is usually the result of an excessively hot environment (heat stroke) or an adverse reaction to drugs. Fever can be differentiated from hyperthermia by the circumstances surrounding it and its response to anti-pyretic medications.

Pyrogens

A pyrogen is a substance that induces fever. These can be either internal (endogenous) or external (exogenous) to the body. The bacterial substancelipopolysaccharide (LPS), present in the cell wall of some bacteria, is an example of an exogenous pyrogen. Pyrogenicity can vary: In extreme examples, some bacterial pyrogens known assuperantigens can cause rapid and dangerous fevers. Depyrogenation may be achieved through filtration,distillationchromatography, or inactivation.

Endogenous

In essence, all endogenous pyrogens are cytokines, molecules that are a part of the immune system. They are produced by activated immune cellsand cause the increase in the thermoregulatory set point in the hypothalamus. Major endogenous pyrogens are interleukin 1 (α and β)[32]and interleukin 6 (IL-6). Minor endogenous pyrogens includeinterleukin-8tumor necrosis factor-β,macrophage inflammatory protein-α and macrophage inflammatory protein-β as well as interferon-αinterferon-β, andinterferon-γ.[32] Tumor necrosis factor-αalso acts as a pyrogen. It is mediated byinterleukin 1 (IL-1) release.[33]

These cytokine factors are released into general circulation, where they migrate to the circumventricular organs of thebrain due to easier absorption caused by the blood–brain barrier‘s reduced filtration action there. The cytokine factors then bind with endothelial receptors on vessel walls, or interact with local microglial cells. When these cytokine factors bind, the arachidonic acid pathway is then activated.

Exogenous

One model for the mechanism of fever caused by exogenous pyrogens includes LPS, which is a cell wall component of gram-negative bacteria. An immunological protein calledlipopolysaccharide-binding protein (LBP) binds to LPS. The LBP–LPS complex then binds to the CD14 receptor of a nearby macrophage. This binding results in the synthesis and release of various endogenous cytokine factors, such as interleukin 1 (IL-1), interleukin 6 (IL-6), and the tumor necrosis factor-alpha. In other words, exogenous factors cause release of endogenous factors, which, in turn, activate the arachidonic acid pathway.

PGE2 release

PGE2 release comes from thearachidonic acid pathway. This pathway (as it relates to fever), is mediated by theenzymes phospholipase A2 (PLA2),cyclooxygenase-2 (COX-2), andprostaglandin E2 synthase. These enzymes ultimately mediate the synthesis and release of PGE2.

PGE2 is the ultimate mediator of the febrile response. The set point temperature of the body will remain elevated until PGE2 is no longer present. PGE2 acts on neurons in the preoptic area (POA) through the prostaglandin E receptor 3 (EP3). EP3-expressing neurons in the POA innervate thedorsomedial hypothalamus (DMH), the rostral raphe pallidus nucleus in themedulla oblongata (rRPa), and theparaventricular nucleus (PVN) of thehypothalamus . Fever signals sent to the DMH and rRPa lead to stimulation of thesympathetic output system, which evokes non-shivering thermogenesis to produce body heat and skin vasoconstriction to decrease heat loss from the body surface. It is presumed that the innervation from the POA to the PVN mediates the neuroendocrine effects of fever through the pathway involving pituitary gland and variousendocrine organs.

Hypothalamus

The brain ultimately orchestrates heat effector mechanisms via the autonomic nervous system. These may be:

In infants, the autonomic nervous system may also activate brown adipose tissue to produce heat (non-exercise-associated thermogenesis, also known as non-shivering thermogenesis). Increased heart rate and vasoconstriction contribute to increasedblood pressure in fever.

Usefulness

There are arguments for and against the usefulness of fever, and the issue is controversial.[34][35] There are studies using warm-blooded vertebrates[36] andhumans[37] in vivo, with some suggesting that they recover more rapidly from infections or critical illness due to fever. Studies suggest reduced mortality in bacterial infections when fever was present.[38]

In theory, fever can aid in host defense.[34] There are certainly some important immunological reactions that are sped up by temperature, and somepathogens with strict temperature preferences could be hindered.[39]

Research[40] has demonstrated that fever assists the healing process in several important ways:

Management

Fever should not necessarily be treated.[42] Most people recover without specific medical attention.[43] Although it is unpleasant, fever rarely rises to a dangerous level even if untreated. Damage to the brain generally does not occur until temperatures reach 42 °C (107.6 °F), and it is rare for an untreated fever to exceed 40.6 °C (105 °F).[42]

Conservative measures

Some limited evidence supports sponging or bathing feverish children with tepid water.[44] The use of a fan or air conditioning may somewhat reduce the temperature and increase comfort. If the temperature reaches the extremely high level of hyperpyrexia, aggressive cooling is required.[24] In general, people are advised to keep adequately hydrated.[45] Whether increased fluid intake improves symptoms or shortens respiratory illnesses such as thecommon cold is not known.[46]

Medications

Medications that lower fevers are calledantipyretics. The antipyretic ibuprofen is effective in reducing fevers in children.[47] It is more effective thanacetaminophen (paracetamol) in children. Ibuprofen and acetaminophen may be safely used together in children with fevers.[48][49] The efficacy of acetaminophen by itself in children with fevers has been questioned.[50]Ibuprofen is also superior to aspirin in children with fevers.[51] Additionally,aspirin is not recommended in children and young adults (those under the age of 16 or 19 depending on the country) due to the risk of Reye’s syndrome.[52]

Using both paracetamol and ibuprofen at the same time or alternating between the two is more effective at decreasing fever than using only paracetamol or ibuprofen.[53] It is not clear if it increases child comfort.[53]

Epidemiology

About 5% of people who go to an emergency room have a fever.[54]

History

A number of types of fever were known as early as 460 BC to 370 BC whenHippocrates was practicing medicine including that due to malaria (tertian or every 2 days and quartan or every 3 days).[55] It also became clear around this time that fevers were a symptom of a disease rather than a disease in and of itself.[55]

Society and culture

Etymology

Pyrexia is from the Greek pyr meaningfire. Febrile is from the Latin word febris, meaning fever, and archaically known asague.

Fever phobia

Fever phobia is the name given by medical experts to parents’ misconceptions about fever in their children. Among them, many parents incorrectly believe that fever is a diseaserather than a medical sign, that even low fevers are harmful, and that any temperature even briefly or slightly above the oversimplified “normal” number marked on a thermometer is a clinically significant fever.[56] They are also afraid of harmless side effects likefebrile seizures and dramatically overestimate the likelihood of permanent damage from typical fevers.[56] The underlying problem, according to professor of pediatrics Barton D. Schmitt, is “as parents we tend to suspect that our children’s brains may melt.”[57]

As a result of these misconceptions parents are anxious, give the child fever-reducing medicine when the temperature is technically normal or only slightly elevated, and interfere with the child’s sleep to give the child more medicine.[56]

Other animals

Fever is an important feature for thediagnosis of disease in domestic animals. The body temperature of animals, which is taken rectally, is different from one species to another. For example, a horse is said to have a fever above 101 °F (38.3 °C).[58] In species that allow the body to have a wide range of “normal” temperatures, such as camels,[59] it is sometimes difficult to determine a febrile stage.

Fever can also be behaviorally induced by invertebrates that do not have immune-system based fever. For instance, some species of grasshopper will thermoregulate to achieve body temperatures that are 2 – 5 °C higher than normal in order to inhibit the growth of fungal pathogens such asBeauveria bassiana and Metarhizium acridum.[60] Honeybee colonies are also able to induce a fever in response to a fungal parasite Ascosphaera apis[60]

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s